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Introduction

Generative model  Simple 1D gaussia Targeted complex 1D
to be learned listribution we know distribution we don’t know

ample from how to sample from

1D example:

we illustrate the
effet of G over
the entire
distribution

datc High dimension data
t from simple point from complex
fistributior image distribution

Generative models aims at learning a function that takes data from a simple distribution and transform it into
data from a complex distribution.
Rocca, 2022 4



Retrospective

e 2013: Kingma and Welling introduce Variational AutoEncoder. Train an
autoencoder with regularized latent space. Encoder is regularized towards
a gaussian distribution. Decoder is like the G() function. Takes a sample
from the gaussian like distribution and produces new sample close the the
original distribution.

* 2014: Goodfellow et al introduced Generative Adversarial Networks
(GANSs). Train a generative network, G(), to produce a sample from a
random input such as a Gaussian distribution and output a sample
indistinguishable from the target distribution. D tries to guess, G tries to
fool D.

e 2015: Sohl-Dickstein “Deep Unsupervised Learning using Nonequilibrium
Thermodynamics”



Commercial Diffusion Solutions

e Dall-E 2 and 3 from OpenAl
* Imagen from Google
* Make-A-Scene from Meta

* Imagen Video from Google
* Make-A-Video from Meta
 Stable Diffusion 3 from stability.ai

* Model Version 6 from midjourney.com



https://arxiv.org/pdf/2204.06125.pdf
https://imagen.research.google/
https://ai.facebook.com/blog/greater-creative-control-for-ai-image-generation/
https://imagen.research.google/video/paper.pdf
https://arxiv.org/pdf/2209.14792.pdf
https://stability.ai/stable-image
https://docs.midjourney.com/docs/models

Examples

Examples above have been generated by Meta Make-A-Scene model, that generates images from
both a text prompt and a basic sketch for greater level of creative control.



Basic idea of Diffusion Probabilistic Models

* learn the reverse process of

* a well defined stochastic forward process that progressively destroys
information, taking data from our complex target distribution and
bringing them to a simple gaussian distribution.

* reverse process is then expected to take the path in the opposite
direction, taking gaussian noise as an input and generating data from
the distribution of interest.
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n't it equivalent to learn a single big functior instead of learning T smaller functions G?
If we set G* = G,© G, ... > G, = G, both tasks can look pretty similar at first silRpcca, 2022
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Outline

First:

e Stochastic Process

e Diffusion Process

Then intuition behind DPMs

Then some math basis

Then how trained in practice



Markov stochastic process

Stochastic Processes
* Discrete: X,,, Vne N
* Continuous: X;, Vt = 0

Realization of a random variable - sample

Realization of a stochastic process = sample path or trajectory



Different types of stochastic processes
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Markov (Stochastic) Process

A Markov process is a stochastic process with no memory.

Future behavior only depends on the present.

P(X, |Xe, o Xe) =P(Xe |Xe, ) Vo <ty < ..

<t, <ty

13



Diffusion Process

Any diffusion process can be described by a stochastic differential
equation (SDE)

dX, = a(X,, t)dt + (X, t)dW,

where:
a(-) is called the drift coefficient
o(+) is called the diffusion coefficient
W is the Wiener process

Both a and o are a function of the value and time

14



Diffusion Process

Any diffusion process can be described by a stochastic differential
equation (SDE)

dX, = a(X,, t)dt + (X, t)dW,

\ )\ )
Y Y

Simple differential equation Stochastic part

where:
a(-) is called the drift coefficient

o(+) is called the diffusion coefficient
W is the Wiener process

15



Wiener Process (Brownian Motion)

Continuous time stochastic process

The Wiener process W; is characterised by the following properties:[2!

1. Wy = 0 almost surely

2. W has independent increments: for every t > 0, the future increments Wy, — Wi, u > 0, are

independent of the past values W, s < t.

3. W has Gaussian increments: W, .., — W}; is normally distributed with mean ( and variance wu,

E—) [WH_u — Wy ~ N(0, u)]

4. W has almost surely continuous paths: W; is almost surely continuous in .

Five sampled
processes

0.0 05 1.0 15 2.0 25 3.0
https://en.wikipedia.org/wiki/Wiener process

Expected standard
deviation

16


https://en.wikipedia.org/wiki/Wiener_process

Norbert Weiner

Norbert Wiener (November 26, 1894 — March OB e ) sk
18, 1964) was an American computer scientist, SR o
mathematician and philosopher. He became a RN
professor of mathematics at the Massachusetts
Institute of Technology (MIT).

A child prodigy, Wiener later became an early

great, great

researcher in stochastic and mathematical noise Norbert Welner cand advisor ©
processes, contributing work relevant to & v
electronic engineering, electronic l
communication, and control systems. pmar Sose

. . . o . DARK HERO
Wiener is considered the originator of l .
cybernetics, the science of communication as it T — N E O
relates to living things and machines. 1937--(1964)-
Heavily influenced John von Neumann, Claude v/ \
Shannon etc Russell M Mersereau Ronald W. Schafer IN SEARCH OF

’ gy [ il NORBERT WIENER

Wrote “The Machine Age” in 1949 anticipating ol
rObOtS, etc. u OF CYBERNETICS

Thomas Gardos FLO CONWAY & JIM SIEGELMAN

https://en.wikipedia.org/wiki/Norbert Wiener
https://www.nytimes.com/2013/05/21/science/mit-scholars-1949-essay-on-machine-age-is-found.html



https://en.wikipedia.org/wiki/Norbert_Wiener
https://www.nytimes.com/2013/05/21/science/mit-scholars-1949-essay-on-machine-age-is-found.html

Discretizing

So

Property of Weiner Process:

th ~ Wt+dt o Wt ~ N(O’ dt) The std is equal to the time

step.

Discretizing the SDE
Xevar — Xy = a(X, t)dt + o(X,,t)U  where U~ N(0,dt)

Which can also be rewritten
Xevar = X +aX,t)dt + U where U'~N(0,0(X, t)dt)

Deterministic drift term Normal RV with std proportional to diffusion term

Rocca, 2022
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Diffusion process samples

- dx = -x*dt

dx = 0*dt + dWt

dx = 0*dt

dx = 2*dt + dwt
dx = 2*dt

dx = -x*dt + dwt
dx = -x*dt + 4*dWt

Rocca, 2022
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Reversed time process

If X; is a diffusion process such that
dX; = a(X, t)dt + o(t)dW,
then the reversed-time process, X; = Xr_, is also a diffusion process
dX, = [a(X,, t) — 02(t)Vy, logp(X,)]dt + o (£)dW,
= a(X,, t)dt + a(t)dW,
where Vy logp(X;) is called the score function and p(X;) is the marginal probability of X,

Rocca, 2022 20



Intuition behind diffusion processes

Progressively destroys relevant information

E.g. with shrinking (|a| < 1) drift coefficient and non-zero diffusion coefficient will
turn complex distribution into isotropic gaussian

Xt =/1—-pX¢i1 + /pus where ug ~N(0,1) and p=0.01

Xe=v0.99X,_1+V0.0luy where uz~N(0,1)
Xe—=N(0, 1)

/WM“M % /
VRV PR NN

Rocca, 2022 21



Intuition behind diffusion processes

X¢=vV0.99X,_1+V0.01lu, where ur~N(0,1)
Xe—=>N(0,1)

\ 2

Towards Gaussian

For the diffusion process

Xe=+/1-pX; 1+ \/z_)ut

where us ~N(0,1) and p=0.01

After a given number of steps T we can write

Xr=+1-pXr_1+/pur
= (V1 —-p)?X7_2+ /1 — py/pur—1 + \/pur

T-1
=(V1-p)"Xo+ Y _ vp(v/1-p)ur_;
=0

\

)

Y

This is a sum of independent gaussians,
SO can express as single gaussian with
variance the sum of the variances.

Rocca, 2022
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Intuition behind diffusion processes

Xe=V0.99X,_1 +V0.0lu, where ur~N(0,1) ‘YT = \/l — ])‘Y'l’ 1 + \/])'lvl-'/'

Xe=N(0,1)

— (\/l —p)°Xr_o+ V1 —p/pur—1 + /pur

T—1

= (\/1 - ]’)'I‘JYU T Z \/ﬁ(\/l - ]’))7“'/‘—/

1=0

For number of steps T large enough, we have

Geometric series

Towards Gaussian v [ \
WI=p — 0 and 3 (va/I=p)) =pi TP g
T— 00 =0 1-— (]. - p) T—o0
\ J
Y

Variance of the gaussian

So for any starting point, we tend to a normal gaussian.
Rocca, 2022 23



Same idea but for images

But in HXW XC dimensions, e.g. 100x100X3 for 100x100 resolution
RGB images

Xr_2 Xr—

Rocca, 2022 24



Why use diffusion?

Answer:

Gives us a progressive and structured way to go from a complex
distribution to an isotropic gaussian noise

that will enable the learning of the reverse process



Intuition behind learning the reverse process

Hard % Hard %

Reversing process in one step is extremely difficult

Rocca, 2022 26



Doing it in steps gives us some clues

An o O :;‘

®
Ends with high Easier as there is Not easy but Starting the reverse
quality sample less and less noise some clues appear process is hard

Rocca, 2022
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One step versus multi-step

[ N N ]
G, (to be G, (to be G,, (tobe G, (to be
learned) learned) learned) learned)

G* (to be learned)
Isn't it equivalent to learn a single big function G* instead of learning T smaller functions G;?
If we set G* = G, 0 G,o...o G, o G both tasks can look pretty similar at first sight.

Rocca, 2022

28



Advantage of multi-step reverse process

1. Don’t have to learn a unique transform
G, for each step, but rather a single
transform that is a function of the
index step. Drastically reduces size of

T Y the model.
l\_/ \/
G, (to be G, (to be G,, (tobe G, (to be . . . .
T fearmed) earned earned fearned) 2. Gradient descent is much more difficult
6* (o be learnec) in one step and can exploit coarse to

Isn't it equivalent to learn a single big function G* instead of learning T smaller functions G;?
If we set G* = G, © G,o ... ° G, o G, both tasks can look pretty similar at first sight.

fine adjustments in multiple steps,.

Rocca, 2022 29



lterative versus one step

[ N N J
G (to be G (to be G (to be G (to be
learned) learned) learned) learned)

Learning transitions of the reverse process are not completely different tasks meaning
that we can learn a common model G(image , step) that takes both the current
image and the current step as inputs instead of one different model for each step

G* (to be learned)
G* can't rely on the same nice iterative structure than G, meaning that this unrolled version
supposed to be equivalent to G, ¢ G,o ... e G, o G, will have more parameters and will be harder to train

Rocca, 2022



Similarities and differences to VAEs

Similarities: Differences:

* An encoder transforms a complex  DPM is multi-step, versus one step
distribution into a simple for VAE
distribution in a structured way to
learn a decoder that produces a
similar sample

e DPM encoder is fixed and does not
get trained

 DPM will be trained based on the
structure of the diffusion process

 DPM latent space is exactly same
as input, as opposed to VAE which
reduces dimensionality

Rocca, 2022






Mathematics of Diffusion Models

Assume the forward and reverse process operate in T steps.

Both forward and reverse process are discrete so becomes a Markov
chain with gaussian transition probability.

Diffusion Process

Any diffusion process can be described by a stochastic differential
equation (SDE)

dX, = a(X;, t)dt + o (X, t)dW,

where:
a(+) is called the drift coefficient
o(+) is called the diffusion coefficient
W is the Wiener process

Both a and ¢ are a function of the value and time

33



. . . N(w0%)
Mathematics of Diffusion Models

Denote x, as a sample from a distribution g(x;).
Forward process: gaussian transition probability

q(xelxe—q) = ]\f(xt;\/(l — Bt) X¢—1,BeI) where t €N

and where f; indicates trade-off between info to be kept from previous
step and new noise added.

Rocca, 2022



. . . N(w0%)
Mathematics of Diffusion Models

Denote x, as a sample from a distribution g(x;).
Forward process: gaussian transition probability

q(xelxe—q) = ]\f(xt;\/(l — Bt) X¢—1,BeI) where t €N

and where f; indicates trade-off between info to be kept from previous
step and new noise added.

We can equivalently write
Xt = \/(1_,81:) Xt—1 + \/:B_tEt e.~N(0,1)

Discretized diffusion process

Rocca, 2022



. . . N(w0%)
Mathematics of Diffusion Models

Through recurrence, we can represent any step in the chain as directly
represented from x:

q(xelxe) = NV (xg; @ xo, (1= @)D

where

ar=(1—-p;) and a;= f=1 a; = §=1(1 — Bi)

and from the Markov property, the entire forward trajectory is

T
q(xo.7) = q(x) l_[ q(xelxe—q)
t=1

Rocca, 2022



The reverse process

With the assumption on the drift and diffusion coefficients, the reverse
of the diffusion process takes the same form.

Reverse gaussian transition probability
q(xe—1]x¢)
can then be approximated by
Po(Xe—1 | x¢) = N (xp—1; o (Xt ), Zg (x4, 1))

where ug and Xy are two functions parameterized by 6 and learned.

Rocca, 2022



The reverse process

Using the Markov property, the probability of a given backward
trajectory can be approximated by

T
Py (x0.7) = p(x7) 1_[ po(xe—1lxt)
t=1

where p(x) is an isotropic gaussian distribution that does not depend
on 6

p(xr) = N (xr1;0,1)

Rocca, 2022



FIXED FORWARD PROCESS

f](l’O) Q($L’m{,—l) - N(«Tt,; v1-— /31/1’/,—13,5/,])

q(z1|zo) f]("l’z\‘l’l)
W—m
L N
pe(zolz1) po(1|z2) po(zr_2lzr_1)  po(®r_1lTT)
Approximation of Gaussian transition kernel with parameters to be learned Initial distribution
q(@¢—1|we) Po(Ti—1|Tt) = N(zt—1; po (e, 1), o (e, 1)) p(zr) = N (2 0,1)

LEARNED BACKWARD PROCESS

Rocca, 2022 39



Questions

How do we learn the parameters 6 for ug and Xg?

What is the loss to be optimized?

* We hope that pg (xy), the distribution of the last step of the reverse
process, will be close to q(xg)



Optimization Objective

Ky, Xy = arg min (Dgr(q(zo)||pe(20)))

Ho,240

s (e (3 )

= arg min (— / q(xo)log(pe(wo))dwo)

16,20



Skipping a lot more math

* Expand p-theta as marginalization integral

* Use Jensen’s inequality to define a slightly simpler upper bound to
the loss

 Some manipulations with Bayes’ Theorem
* Properties of KL divergence of two gaussian distributions
* An additional simplification suggested by [Ho et al 2020]



Diffusion models in practice

We have the forward process

Q($t|$t—1) = N(-Tt; L — 5t$t—1,5t1) Q($t|$0) = N(xt; \/aftwo, (1 - @t)f)

and our reverse process

po(xt—1|zt) = N (Tt—1; oz, 1), Zo (x4, 1))

and we want to train to minimize this simplified upper bound

EI()J,G (“6 - GQ(wtﬁt)H‘Z) = IESCU,t,G (”6 - 69(\/(7‘&3"0 + v 1 - &teat)HQ)

43






Training Process

1

Sample random step
from random trajectory

Sample image Sample noise

Sample time step between 1 and T

Generate random step from
random trajectory

2

Make a forward pass of the
model to eastimate noise

Parametrised
noisy image model

Generated

Estimated noise in
the noisy image

Algorithm 1 Training

1: repeat

2 o ~ q(Zo)

3: ¢~ Uniform({1,...,T})

4 e~ N(0,I)

5: Ty = /@y + /1 — aye

6: Take gradient descent step on V||e — ¢p(z4, )| |?
7: until converged

>Sample random initial data
>Sample random step

>Sample random noise

>Rand. step of rand. trajectory
>Optimisation

3

Take a gradient descent step
to update model parameters

L=| - I§

Estimated True
noise noise

Update model parameters
taking gradient descent step

Rocca, 2022 45



To sample/generate

STEPT/2 STEP 1

STEPT

Current state Estimated noise Estimated x0 Next state
Use the model "Remove” estimated noise  Linear combination between the
to estimate the noise in from current state using the  current state and estimated x0
the current state appropriate formula with some additional noise

P .
(gaussian noise)

lllustration of the sampling process of a denoising diffusion probabilistic model.

Rocca, 2022
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To sample/generate

Algorithm 2 Sampling

1::%7*”UJ\[(0,1)
2: for £ =1, ..., 1 do
33 z~N(,I)ift>1lelsez=0

4: €= Eg(wt, t)

5 @ = g (7 — V1 — &)

6: /1 = /'l't(mta:fO) (: \/% (xt - lﬂ_tdtég(l't,t)))
i Ti—1 = [L ot 0 2 A

8: end for
9: return z

>Initial isotropic gaussian noise sampling

>Sample random noise (if not last step)
>Estimated noise in current noisy data
> Estimated xq from estimated noise
>Mean for previous step sampling

>Previous step sampling

Rocca, 2022
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U-Net (2016) as the Model

Output is same size as the input.

)
‘.)6+ (o‘,o+\c)‘

TR
oF ot
e ‘73)6
e

Res .—glock Concatenate

Res. block +
self-attention

Concatenate

Concatenate

Concatenate

time embedding

48



U-Net for reverse diffusion

49



Conditional generation

Classifier Guidance

* Modify the denoising update from z; to z,_; to incorporate class
information, c.

Guidance from text

* Condition on a sentence embedding computed from a language
model



Conditional generation using classifier
guidance

Figure 18.12 Conditional generation using classifier guidance. Image samples
conditioned on different ImageNet classes. The same model produces high quality
samples of highly varied image classes. Adapted from Dhariwal & Nichol (2021).

Dhariwal and Nichol, “Diffusion Models Beat GANs on Image Synthesis.” 2021. 51



Cascaded
conditional

generation
based on a
text prompt

A Golden Retriever
dog wearing a blue
checkered beret and
red dotted turtleneck

Figure 18.11 Cascaded conditional generation based on a text prompt. a) A diffu-
sion model consisting of a series of U-Nets is used to generate a 64x64 image. b)
This generation is conditioned on a sentence embedding computed by a language
model. ¢) A higher resolution 256 x256 image is generated and conditioned on the
smaller image and the text encoding. d) This is repeated to create a 1024x1024
image. e) Final image sequence. Adapted from Saharia et al. (2022b).

52



Conditional generation using text prompts

A brain riding a rocketship
heading towards the moon

An aﬁérﬁuck doing heavy
weightlifting at the gym

A couple of glasses New York skyline with Hello World
sitting on a table written with fireworks in the sky

Figure 18.13 Conditional generation using text prompts. Synthesized images
from a cascaded generation framework, conditioned on a text prompt encoded by
a large language model. The stochastic model can produce many different images
compatible with the prompt. The model can count objects and incorporate text
into images. Adapted from Saharia et al. (2022D).

C. Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding,” 2022.



Stable Diffusion — Latent Diffusion Models

Project the original data to a smaller latent space using a conventional
autoencoder and then run the diffusion process in the smaller space.

@ ) Latent Space ") (Conditioning
- . Diffusion Process emanti
Ma
2 Denoising U-Net €y 2T Text
Repres
entations
To
—

Pixel Space

denoising step crossattention  switch  skip connection concat

Rombach et al, “High-Resolution Image Synthesis with Latent Diffusion Models,” 2022 54



show a picture of a _—y Y A Victorian-dressed butcher is
victorian dressed NGO, — operating a large, antique meat
butcher cranking a I ) ¥ grinder. Instead of meat, a stack
meat grinder, except s of math textbooks is being fed
math symbols are into the top of the grinder. As
falling in the top and L, these textbooks enter the
pretty pictures are- 4 - | 3 grinder, they are transformed,
dropping out the | iR < 50 ;;;,‘13:'- e and out of the bottom, small,
bottom. Make the P Lo A intricate photographs emerge.
picture 16:9 aspect’l ’ o Do 31 WA 3 These photographs represent the
ratio. transformation of complex
mathematics into visual beauty.
The butcher, wearing a traditional
Victorian outfit complete with an

F,L. *+32133”? ‘ pron, has a focused expression,

phasizing the craftsmanship

involved in this unique process.

he setting is reminiscent of an
old-fashioned butcher's shop,
adding to the Victorian theme.
The image is in a 16:9 aspect
ratio, focusing on the
transformation where math
textbooks turn into small
photographs falling out of the
machine.

gmﬁ I (T




Resources

e 000 o0

* https://towardsdatascience.com/understan

ding-diffusion-probabilistic-models-dpms-

1940329d6048

oo
[ N
[ 3 ® 0000 6 & o0

e CVPR 2023 Tutorial: Denoising Diffusion
Models: A Generative Learning Big Bang,
https://cvpr.thecvf.com/virtual/2023/tutori

al/18546
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